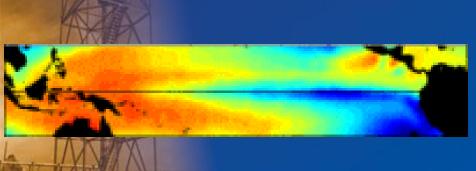
Fenómeno El Niño/Oscilación del Sur (ENOS)

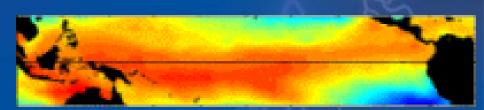
Irina Katchan San José, Costa Rica 01 de Julio 2007

PROGRAMA

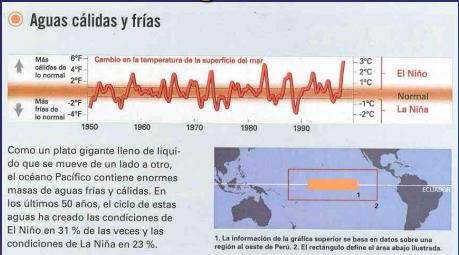
- ✓ Qué es el fenómeno de El fenómeno ENOS?
- **✓ Impactos: mundial, Centroamérica y Costa Rica.**
- ✓ Pronóstico del fenómeno de El Niño para el 2006-2007.
- Pronóstico de condiciones climáticas para América Central y Costa Rica.

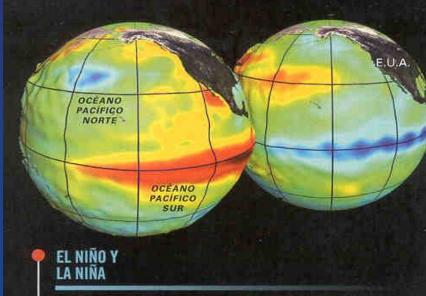
El nombre de "El Niño" proviene de los pescadores de las costas peruanas y ecuatorianas pues cada año cerca de la Navidad aparece frente a las costas una corriente cálida que ellos llamaron El Niño en referencia al Niño Jesús. El nombre de La Niña es más reciente y se usa únicamente a modo de antónimo para describir las condiciones opuestas a las de El Niño.


El ENOS


La Niña

El Niño

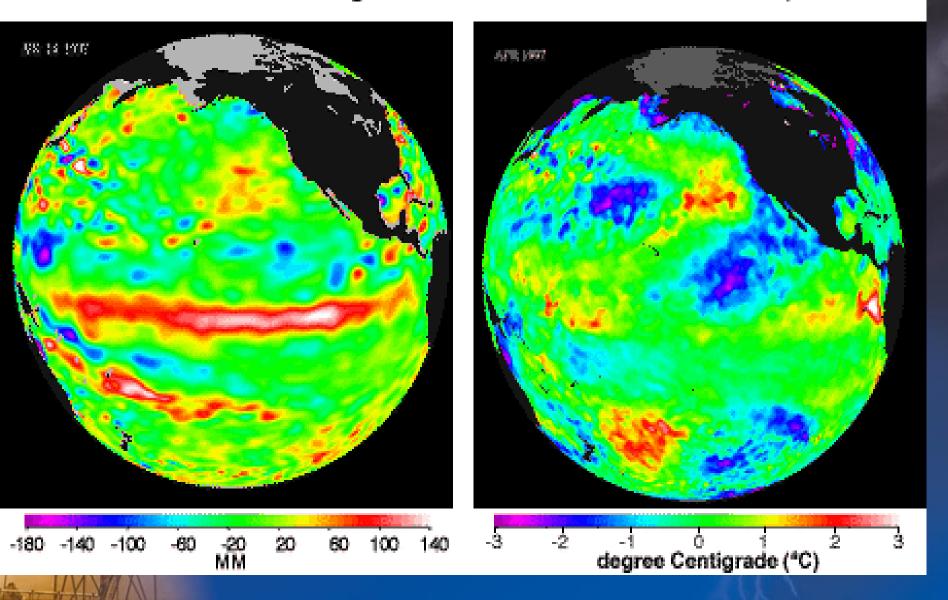


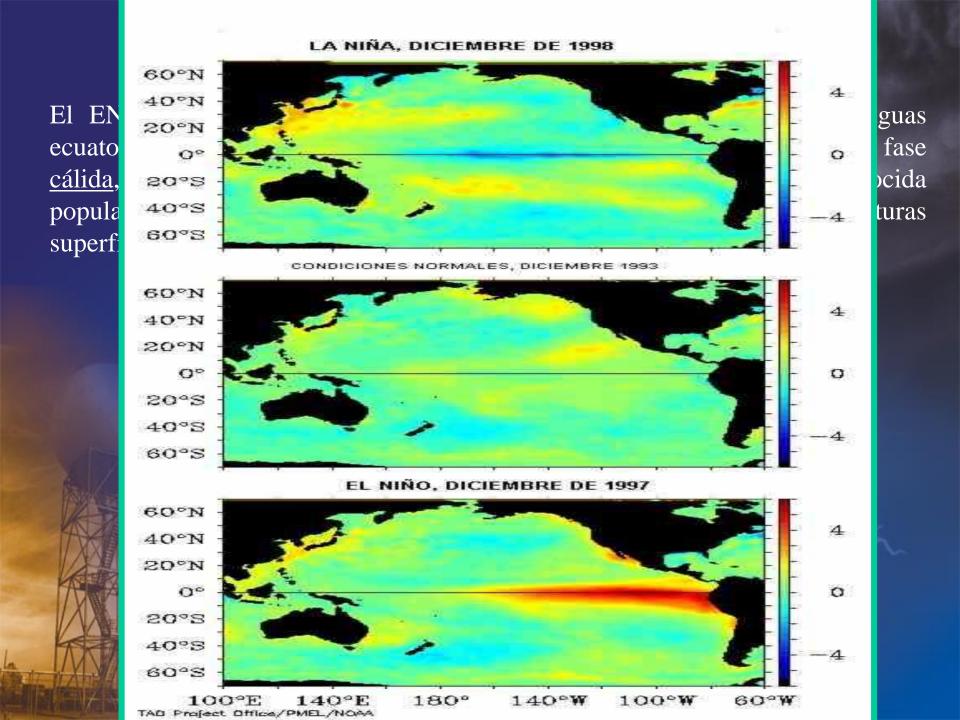


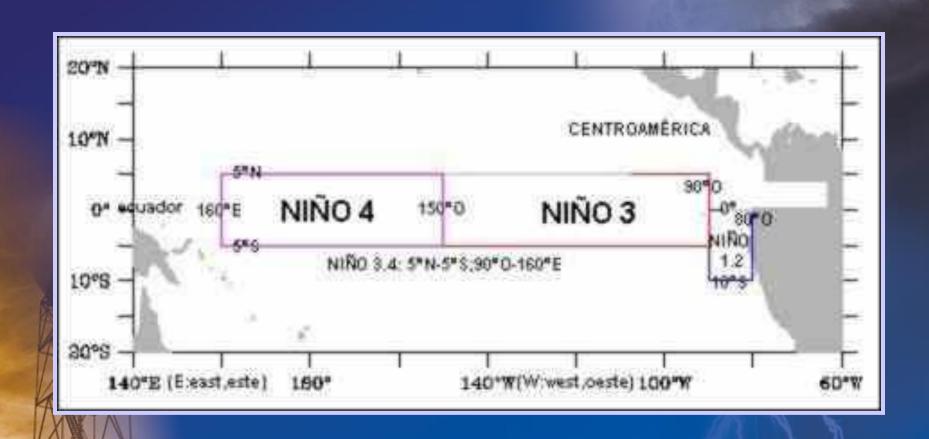
QUE ES EL CICLO DEL ENOS?

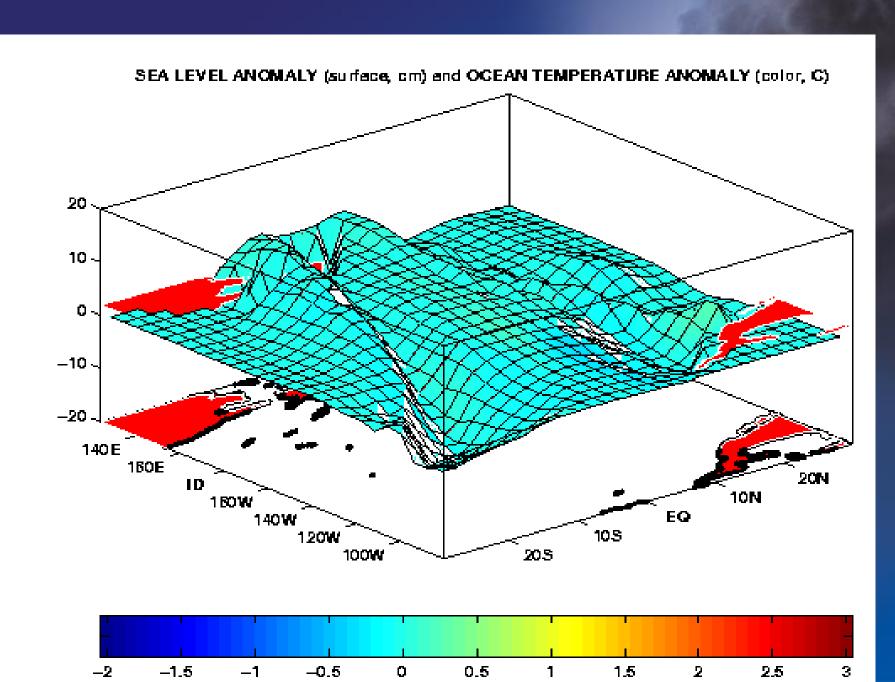
Actualmente los científicos consideran que El Niño (al igual que La Niña) es un fenómeno normal de la Naturaleza.

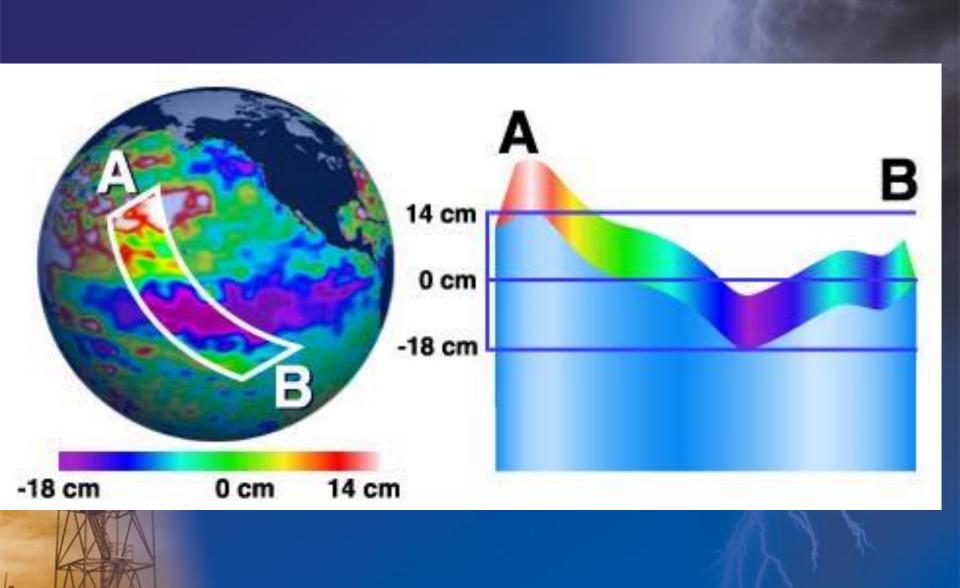
El ENOS puede describirse como una perturbación del estado de equilibrio natural que sostienen mutuamente el océano Pacífico tropical y la atmósfera. Uno de los extremos de este ciclo es El Niño.

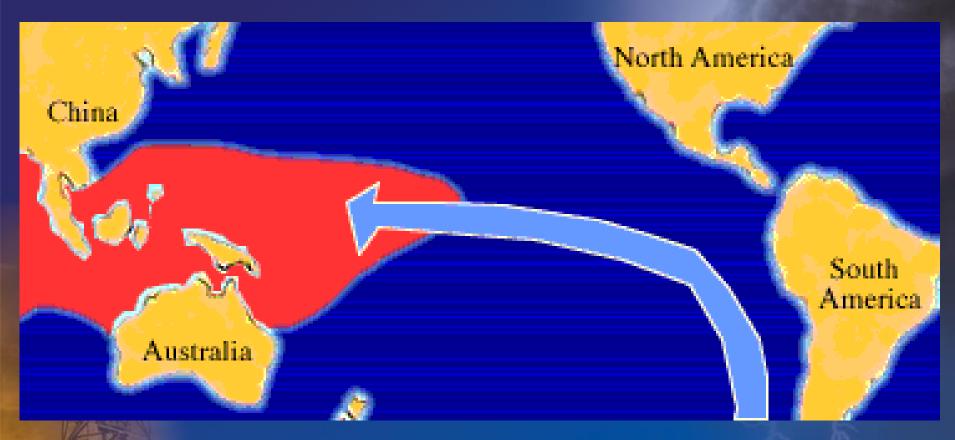

En un rango de frecuencia de tres a siete años, una región del Pacífico de una y media veces la parte continental de EUA experimenta una temperatura más alta de lo normal en hasta 5° C (área roja, arriba). Ese fenómeno, llamado El Ni-


ño, ocurrió por última vez en 1997-1998, con serias consecuencias. La Niña, la contrapartida de agua fría (área azul, arriba a la der.) que a menudo sigue a un El Niño muy fuerte, se encuentra ahora en fase menguante.


SSH - Sea Surface Height


SST - Sea Surface Temperature





Debido a la gran extensión del Océano Pacífico, la comunidad científica internacional lo dividió, para su estudio, en cuatro regiones: NIÑO 1.2, NIÑO 3, NIÑO 4 y NIÑO 3.4.

En condiciones NORMALES el Pacífico occidental siempre es más caliente que la parte central y oriental. Durante El Niño el calor se distribuye en todo el océano.

1.El viento del este empuja las aguas cálidas al oeste

2. El viento del oeste empuja las aguas cálidas al este

ELENOS

Vientos muy debiles

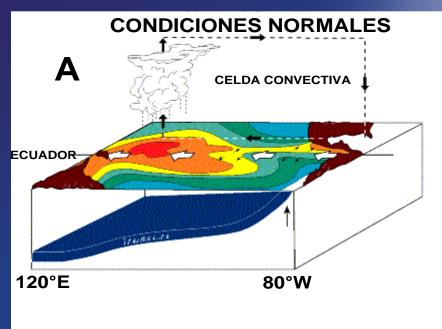
EL NIÑO/CALENTAMIENTO Al disminuir los vientos alisios del este, una capa de aguas cálidas del Pacífico occidental, de 150 m de profundidad, fluye hacia el este, se desliza sobre aguas más frías ricas en nutrientes y bloquea su corriente ascendente en América del Norte y del Sur causando escasez de alimento.

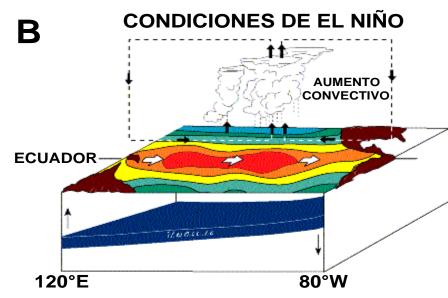
El aire absorbe calor y humedad de la superficie del Vientos fuertes océano y se eleva para formar nubes de tormenta en el Pacifico central. as aguas cálidas se mueven al este Vientos alisios débiles Las nubes de tormenta se

NORMAL Por lo general, los vientos alisios mantienen un equilibrio entre las aguas cálidas del Pacífico occidental y las aguas frías del Pacífico oriental, pero la termorregión (termoclina), el límite entre las aguas cálidas y las frías, ricas en nutrientes, se encuentra a 40 metros bajo la superficie.

Vientos débiles Pacifico occidental. as aguas superficiales cálidas se acumulan en el pacífico socia Vientos alísios fuertes Corrientes de aguas frias afloran a la superficie en el Pacifico oriental

LA NIÑA / ENFRIAMIENTO LLevadas al oeste por los vientos alisios, las aguas cálidas de la superficie del mar circulan rumbo a Asia. Aguas profundas más frías suben a la superficie a lo largo de América. Los nutrientes abundan y la evaporación merma, reduciendo la formación de tormentas y lluvias en la región.


Las nubes de tormenta en el Pacifico occidental se intensifican, al absorber humedad de las aguas superficiales cálidas. Vientos alisios muy fuertes Las aguas cálidas circulan al oeste - Termoclina alarmantemente alta

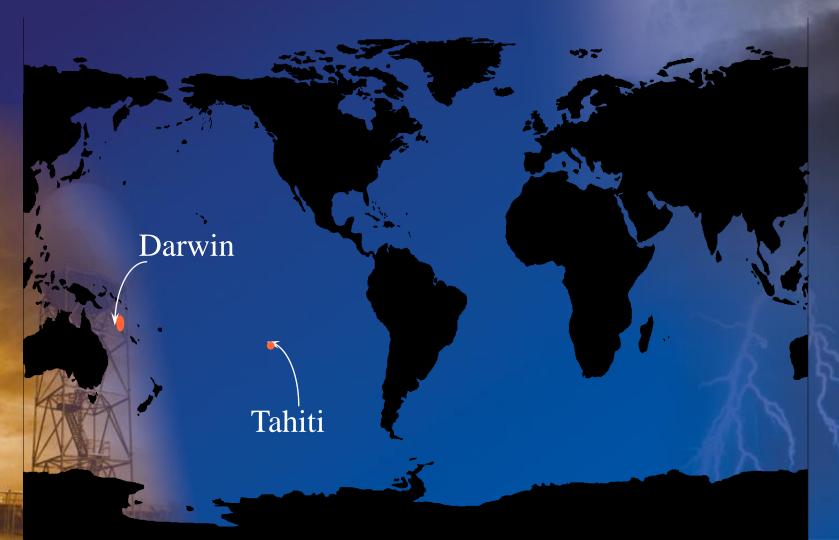

forman sobre las aguas

superficiales cálidas en el

FUENTES: KEVIN TRENBERTH, NCAR; DATOS DE LA NOAA: GRAFICA DE DAVID FIERSTEIN: ARTE POR HEIDI MERSCHER

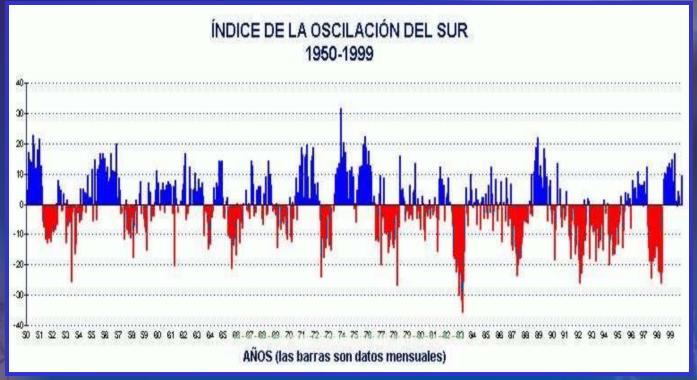
El ENOS

NOAA El Niño y La Niña Definiciones

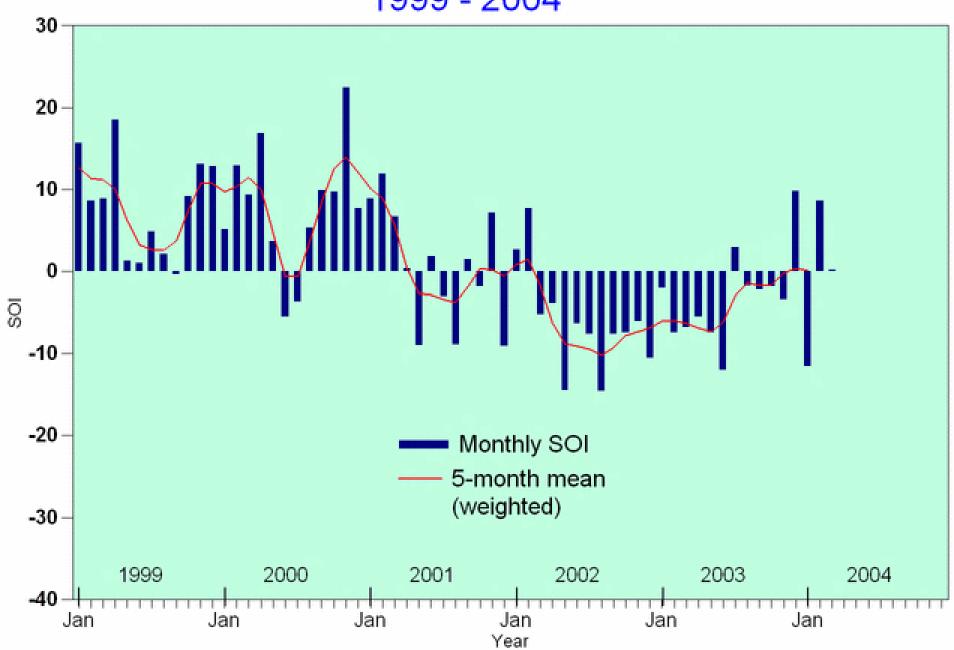

El Niño: se caracteriza con anomalías **positivas** +0.5°C.

La Niña: se caracteriza con anomalías negativas -0.5°C.

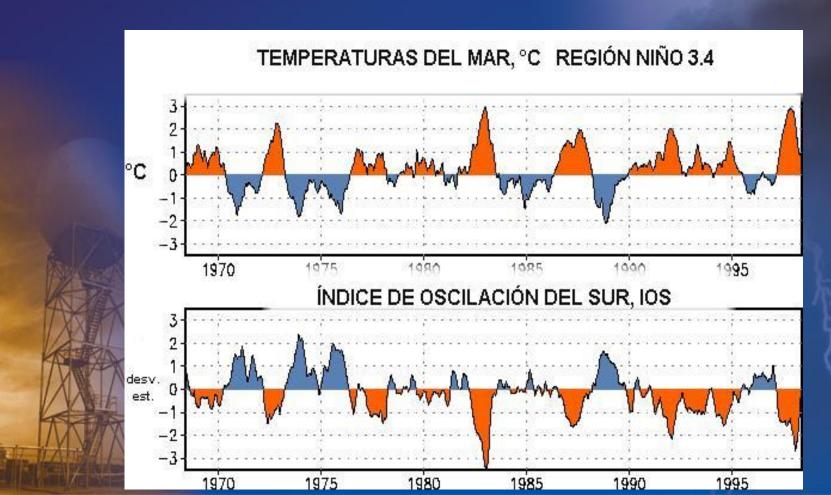
Se califica el episodio de El Niño o La Niña cuando las anomalías persisten por más de 5 meses consecutivos.


OSCILACIÓN DEL SUR (IOS)

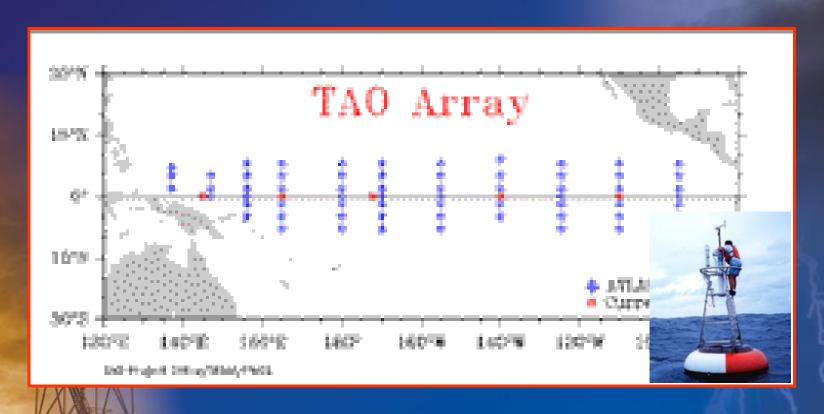
El Índice de la Oscilación del Sur (IOS) es un número que se obtiene de la diferencia de los valores superficiales de presión atmosférica entre la isla de Tahití y Darwin (Australia).


EL ÍNDICE DE LA OSCILACIÓN DEL SUR (IOS)

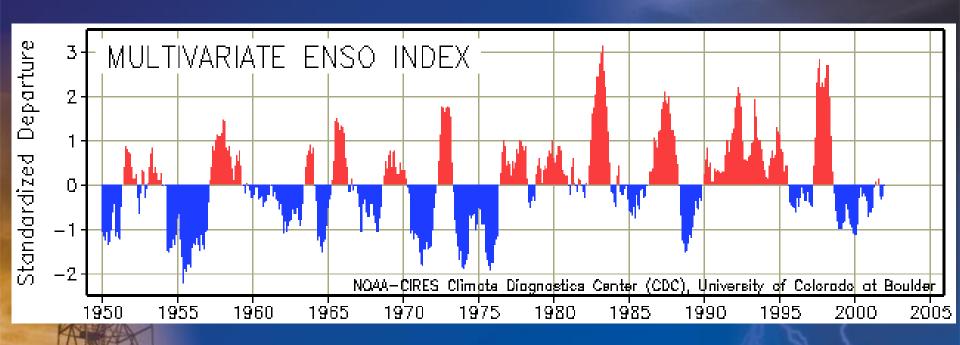
El Índice de la Oscilación del Sur (IOS) es un número que se obtiene de la diferencia de los valores superficiales de presión atmosférica entre la isla de Tahití y Darwin (Australia).


Las barras azules representan las situaciones en las que la presión atmosférica en Tahití es mayor que la de Darwin (por lo general está activo el fenómeno de La Niña, aguas más frías que lo normal) y, por el contrario, las barras de color rojo reflejan las situaciones en que los valores de presión en Darwin son mayores que en Tahití por lo general está activo el fenómeno de El Niño (aguas más cálidas que lo normal.

Southern Oscillation Index (SOI) 1999 - 2004

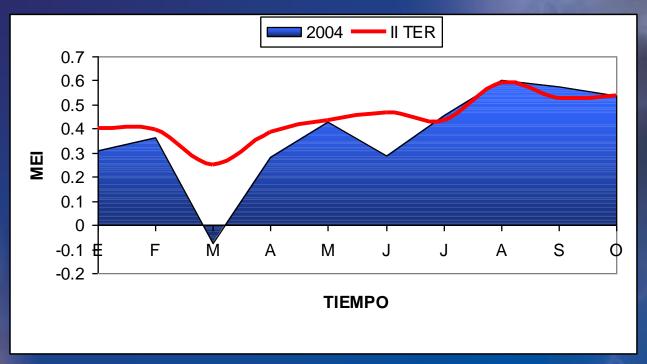

Mecanismos de Monitoreo

Indices de temperatura del mar y de la presión atmosférica.

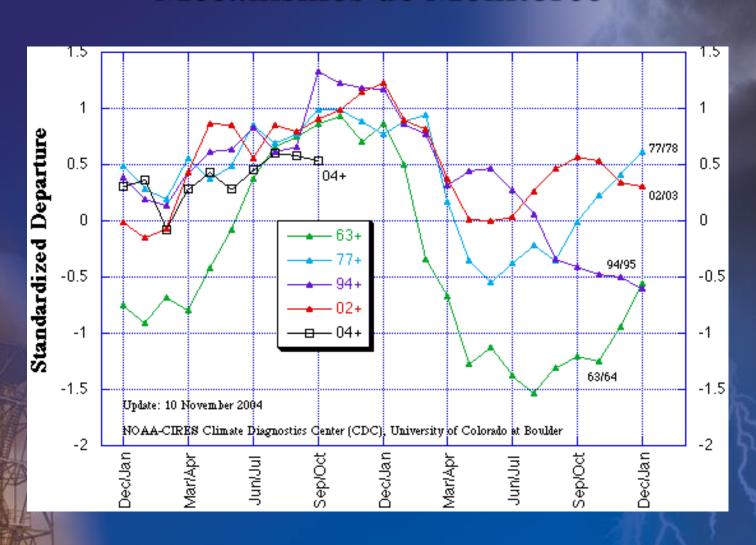

Mecanismos de Monitoreo

Satélites y boyas meteorológicas

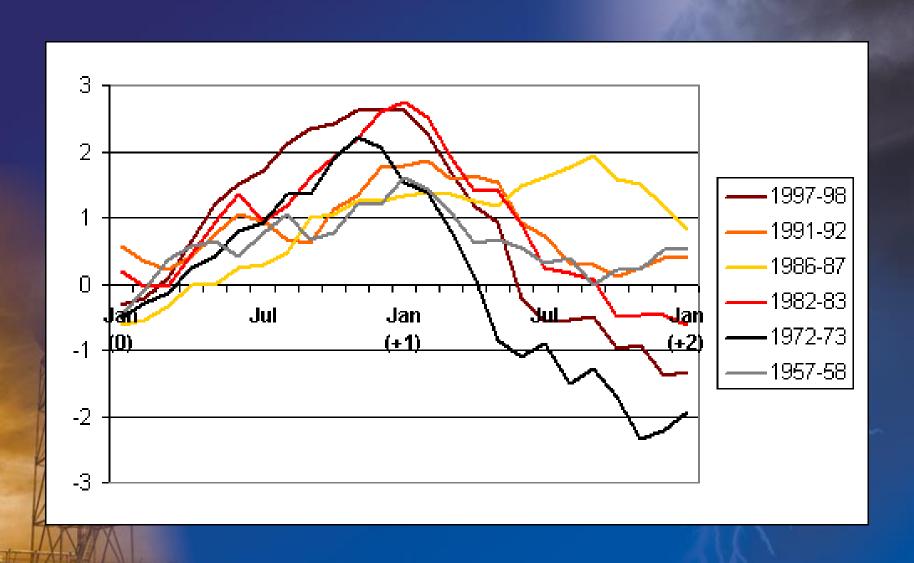
Mecanismos de Monitoreo


Indice combinado o multivariable

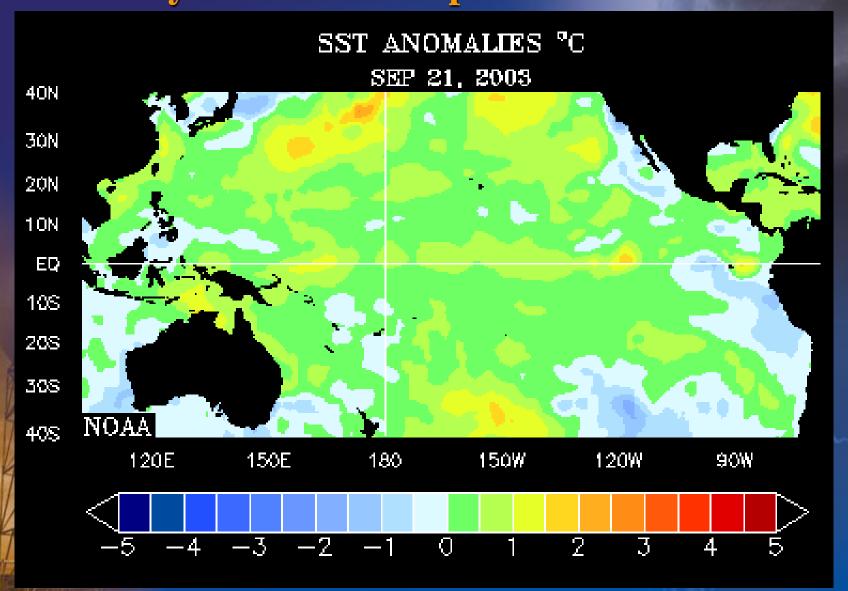
El ENOS


Mecanismos de Monitoreo

Variación temporal del MEI


MEI: Multivariate ENSO INDEX (Wolter & Timlin, NOAA-CIRES/CDC)

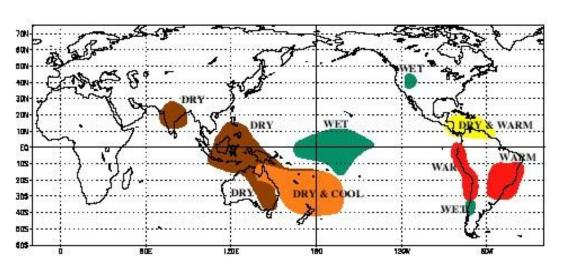
Mecanismos de Monitoreo



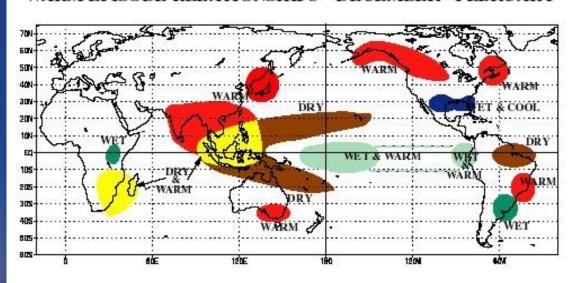
El ENOS

Los Niños más intensos.

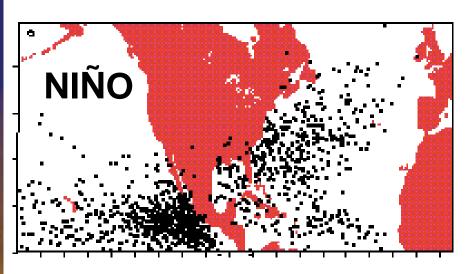
Evolución y distribución espacial del calentamiento

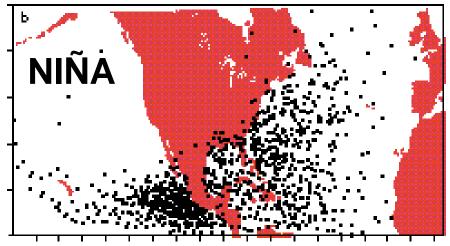


IMPACTOS DE EL NIÑO



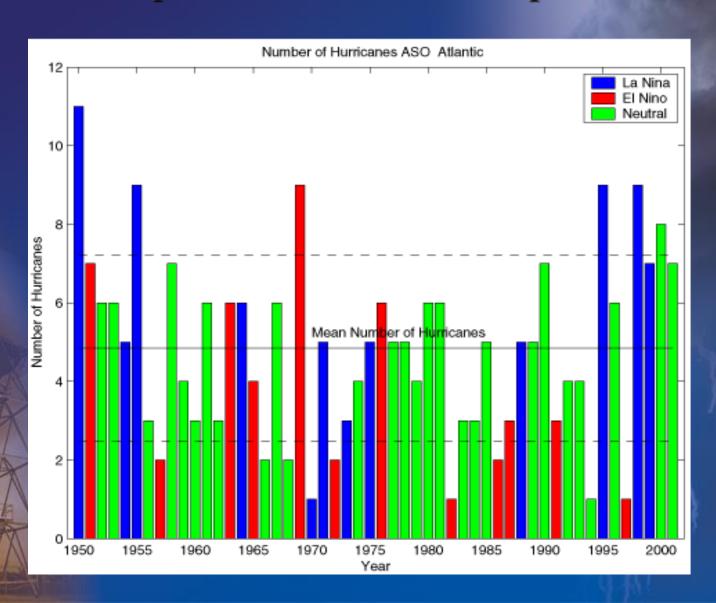
IMPACTOS DE EL NIÑO




WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

IMPACTOS DE EL NIÑO

Temporada de ciclones tropicales



Frecuencia aumenta en 40% durante la NIÑA

IMPACTOS DE EI NIÑO

Temporada de ciclones tropicales

El Niño y La Niña

	Highest		Lowest
El Niño	ONI Value	La Nina	ONI Value
JAS 1951 - NDJ 1951/52	0.7	ASO 1949 – FMA 1951	-1.8
MAM 1957 – MJJ 1958	1.6	MAM 1954 – DJF 1956/57	-2.1
JJA 1963 – DJF 1963/64	1.0	ASO 1961 – MAM 1962	-0.6
MJJ 1965 – MAM 1966	1.6	MAM 1964 – JFM 1965	-1.1
OND 1968 – AMJ 1969	1.0	SON 1967 – MAM 1968	-0.9
ASO 1969 – DJF 1969/70	0.7	JJA 1970 – DJF 1971/72	-1.4
AMJ 1972 – FMA 1973	2.1	AMJ 1973 – JJA 1974	-2.0
ASO 1976 – JFM 1977	0.8	ASO 1974 – AMJ 1976	-1.8
ASO 1977 - DJF 1977/78	0.8	ASO 1983 – DJF 1983/84	-0.9
AMJ 1982 – MJJ 1983	2.3	SON 1984 – MJJ 1985	-1.1
JAS 1986 – JFM 1988	1.6	AMJ 1988 – AMJ 1989	-1.9
AMJ 1991 – MJJ 1992	1.8	ASO 1995 – FMA 1996	-0.8
FMA 1993 – JJA 1993	0.8	JJA 1998 – MJJ 2000	-1.6
MAM 1994 – FMA 1995	1.3	SON 2000 – JFM 2001	-0.7
AMJ 1997 – MAM 1998	2.5		
AMJ 2002 – FMA 2003	1.5		
JJA 2004 – JFM 2005	0.9		
ASO 2006 - DJF 2006/07	1.1		

Datos ENOS históricos. Episodios cálidos (rojo) y los episodios (azules) fríos basados en un umbral de +/- 0.5 oC para el índice oceánico de Nino (ONI) [medio del funcionamiento de 3 meses de las anomalías de ERSST.v2 SST en la región de Nino 3.4 (5N-5S, 120-170W)], calculado con respecto al período 1971-2000.

V				N40 N4	A b .4	N.4.L.		1.4	^ _	00	ON	NID
Yea	DJ	JF	FMA	MAM	AM	MJ	JJ	JA	AS	SO	ON	ND
195	F-	-M5	-1.4	-1,4	-14	J	A	S-	-0.8	-018	-0.9	-1.0
1 9 5	1.8	-0.8	-0,6	-0.4	-0.2	0.1	0.4	0.5	0.6	0.7	0.7	0.6
195	0.3	0.1	0.1	0.1	0.0	-	-	-	-0.1	-0.2	-0.2	-0.1
1 9 5	0.1	0.3	0.4	0.5	0.5	0.4	0.3	0.3	0.4	0.4	0.3	0.3
1 9 5	0.3	0.2	-0.1	-0.5	-0.7	-	-	- 1	-1.1	-1.1	-1.0	-1.0
1 9 5	-	-0.9	-0,9	-1.0	-1.1	0.7	0.8	1.0	-1.5	-1.8	-2.1	-1.7
195	1.0	-0.8	-0.7	-0.6	-0.6	1.0	1.0	1.0	-0.9	-0.9	-0.9	-0.8
195	1.2	-0.1	0.2	0.6		0.8	0.9	0.9	0.8	0.9		1.5
195	1.6	1.5	1.1	0.7		0.5	0.4	0.1	0.0	0.0	0.1	0.3
195	0.4	0.4	0.3	0.2	0.0	-	-	-	-0.4	-0.4	-0.3	-0.3
196	_	-0.3	-0.3	-0.2	-0.1	0.3	0.0	0.5	-0.1	-0.2	-0.3	-0.2
1 9 6	0.3	-0.2	-0.2	-0.1	0.1	0.1	0.0	_	-0.6	-0.6	-0.5	-0.5
196	0.2	-0.5	-0.5	-0.5	-0.4	-	_	0.3	-0.4	-0.6	-0.7	-0.7
196	0.5	-0.3	0.0	0.1	0.1	0.3	0.6	0.8	0.8	0.9	1.0	1.0
196	0.8	0.4	-0.1	-0.5	-0.7	_	_	_	-1.0	-1.1	-1.1	-1.0
1 9 6		-0.5	-0.3	0.0	0.2	0.6	1.0	1.2	1.4	1.5		1.5
196	1.2	1.1	0.8	0.5	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.3	-0.4
196	-	-0.5	-0.6	-0.5	-0.3	0.0	0.0	-	-0.4	-0.5	-0.5	-0.6
196	0.4	-0.9	-0.8	-0.8	-0.4	0.0	0.3	0.2	0.2	0.4		0.9
196	1.0		0.9			0.4	0.4	0.4				0.6
197	0.5	0.3	0.2	0.1	-0.1	_	_	_	-0.8	-0.8	-0.9	-1.2
197	-	-1.4	-1.2	-1.0	-0.8	0.4	0.6	0.8	-0.9	-0.9	-1.0	-0.9
197	1.4	-0.3	0.0	0.3		0.8	1.1	1.3	1.5	1.8	2.0	2.1
197	1.8	1.2	0,5	-0.1	-0.5	_	_	_	-1.4	-1.7	-1.9	-2.0
197	1	-1.6	-1.2	-1.1	-0.9	0.8	1.1	1.3	-0.5	-0.7	-0.8	-0.7
197	1.8	-0.6	-0.7	-0.8	-1.0	0.7	0.5	0.4	-1.6	-1.6	-1.7	-1.8

Datos ENOS históricos. Episodios cálidos (rojo) y los episodios (azules) fríos basados en un umbral de +/- 0.5 oC para el índice oceánico de Nino (ONI) [medio del funcionamiento de 3 meses de las anomalías de ERSST.v2 SST en la región de Nino 3.4 (5N-5S, 120-170W)], calculado con respecto al período 1971-

Yea	DJ	JF	FMA	MAM	AM	MJ	JJ	JA	AS	SO	ON	ND
197	F	<u>-M₂</u>	-0.9	-0.7	J-2(100 •	0 ^ 1	053	0.5	0.7	0.8	0.8
197	0.6		0.2	0.1	0.2	0.2	0.3	0.4	0.5	0.7	0.8	0.8
197	0.7	0.4	0.0	-0.3	-0.4	-			-0.5	-0.4	-0.2	-0.1
197	-	0.0	0.1	0.2	0.1	0.8	0. 0	0.5	0.3	0.4	0.5	0.5
198	0.5	0.3	0.2	0.2	0.3	0.3	0.2	0.0	-0.1	0.0	0.0	-0.1
198		-0.4	-0.4	-0.3	-0.3	-	-		-0.2	-0.1	-0.1	-0.1
198	0.8	0.1	0.2	0.4	0.6	0.7	0.8	0.0	1.5	1.9		2.3
198	2.3		1.6	1.2	1.0	0.6	0.2	-	-0.5	-0.8	-0.9	-0.8
198		-0.3	-0.2	-0.4	-0.5	-	-	0,2	-0.3	-0.6	-1.0	-1.1
1 9 8	0.5	-0.8	-0.8	-0.8	-0.7	0.5	0.3	0.2	-0.4	-0.3	-0.2	-0.3
1 9 8	1.0	-0.4	-0.3	-0.2	-0.1	0.0	0.4	0.5	0.7	0.9		1.2
1 9 8	0.3		1.1	1.0	1.0	1.2	1.5		1.6	1.5		1.1
198			0.1	-0.3	-0.8	_	_	_	-1.3	-1.6	-1.9	-1.9
198		-1.5	-1.1	-0,9	-0.6	1_2	1.2	1.1	-0.3	-0.3	-0.2	-0.1
199	0.1	0.2	0.3	0.3	0.3	0.4	0.3	0.4	0.3	0.3	0.3	0.4
199	0.5	0.4	0.4	0.4	0.6	8.0	0.9		0.8	1.0		1.7
199	1.8		1.6	1.4	1.1	8.0	0.4	0.2	-0.1	-0.1	0.0	0.1
199	0.3	0.4	0.6	0.8	0.8	0.7	0.5	0.4	0.4	0.3	0.2	0.2
199	0.2	0.3	0.4	0.5	0.6	0.6	0.6		0.7	0.9		1.3
199	1.2		0.7	0.4	0.2	0.1	0.0	-	-0.5	-0.6	-0.7	-0.8
199	N -	-0.7	-0.5	-0.3	-0.2	-	-	0,3	-0.2	-0.2	-0.3	-0.4
199	0 .8	-0.3	0.0	0.4	0.9	0.4	0.7	2.0	2.3	2.4		2.5
199	2.4		1.4	1.1	0.4	-		_	-1.1	-1.1	-1.3	-1.5
199		-1.2	-0.9	-0.7	-0.8	0.1	0.8	1.0	-1.0	-1.2	-1.4	-1.6
290	1.6	-1.5	-1.1	-0,9	-0.7	0.8	0-9	0-9	-0.4	-0.5	-0.7	-0.7
200	1.6	-0.5	-0.4	-0.2	-0.1	0.1	0.4	0.3	0.0	-0.1	-0.2	-0.2

Datos ENOS históricos. Episodios cálidos (rojo) y los episodios (azules) fríos basados en un umbral de +/- 0.5 oC para el índice oceánico de Nino (ONI) [medio del funcionamiento de 3 meses de las anomalías de ERSST.v2 SST en la región de Nino 3.4 (5N-5S, 120-170W)], calculado con respecto al período 1971-2000.

												184
Year	DJF	JFM	FMA	MAM	AMJ	MJJ	JJA	JAS	ASO	SON	OND	NDJ
2002	-0.1	0.1	0.3	0.4	0.7			0.9	1.1	1.3	1.5	1.3
2003	1.1	0.8	0.6	0.1	-0.1	0.0	0.3	0.4	0.5	0.5	0.6	0.5
2004	0.4	0.2	0.2	0.2	0.3	0.4		0.8	0.9	0.9	0.9	8.0
2005	0.	0.5	0.3	0.4	0.5	0.	0.2	0.0	0.	-0.2	-0.4	-0.7
2006	-0.8	-0.7	-0.4	-0.2	0.0	მ.1	0.3	0.4	0.	0.9		1.1
2007	0.8	0.3	0.1									
2008												
2009												
2010												
2011												
2012												
2013												
2014												
2015												
2016	1 14											
2017	238/4\											
2018	MST.									10		
2019											80	
2020	週/\											
2021												
2022											JE 1	
2023	WHAT \											
2024	THE REAL PROPERTY.											
2025										1		
2026		Name of the last										
2027	TOO ITS											

IMPACTOS DE EI NIÑO

IMPACTOS DE EI NIÑO

En Costa Rica

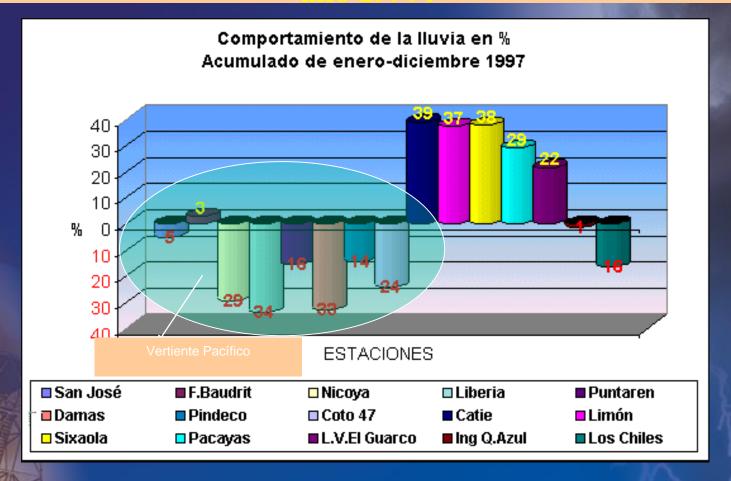
LITORAL PACIFICO

Sequías

Incendios Forestales

Aguas cálidas y pobres

LITORAL CARIBE



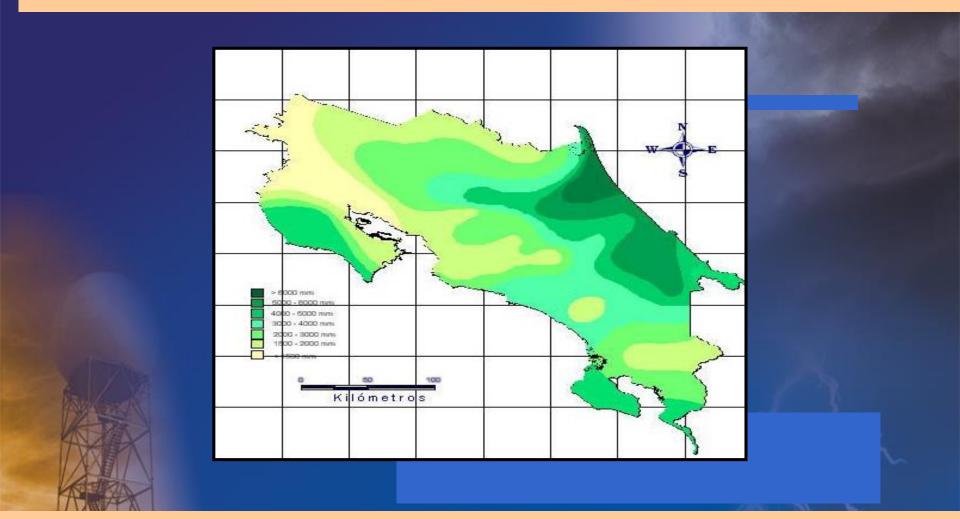
Inundaciones

Efectos de ENOS en Costa Rica

	El Niño	La Niña
Ciclones Tropicales	Menor actividad	Mayor actividad
	Menos intensos	Más intensos
Veranillo	Acentuado	Poco perceptible
Precipitaciones		
Valle Central	Irregular	Lluvioso
Pacífico Norte	Irregular	Lluvioso
Pacífico Central	Irregular	Lluvioso
Pacífico Sur	Cerca normal	Lluvioso
Zona Norte	Más intensas	Menos Iluvioso
Vertiente del Caribe	Más intensas	Menos Iluvioso
Temperatura		
Máxima	Más alta	Menos intensa
Mínima	Más baja	Más intensa
Viento predominante		
Viento del noreste	Incrementa	Debilita
Viento del suroeste	Debilita	Incrementa
Humedad	Desciende	Asciende
Tormentas eléctricas	Mayor actividad	Menor actividad
Tornados	Mayor frecuencia	Menor frecuencia

¿Cuál fue la distribución mensual de precipitación en Costa Rica el año 1997?

En fenómeno El Niño de los años 1997-1998 está catalogado como uno de los eventos más severos en la historia documentada.


¿Afectaciones asociadas al fenómeno "El Niño"?

ENOS	EFECTO	ZONA	CULTIVO	EFECTO	FUENTE
1957	Lluvias	Limón	Cacao	Pérdidas del 75% de la cosecha	Diario de CR. 1957
1958	Lluvias	Zona Sur	Banano	Perdidos 300 mil racimos para exportación	Diario de CR. 1958
	Sequía	Cartago	Papas	Pérdidas de ¢ 16 millones en la agricultura. Baja rendimiento en papa	Ultima Noticia 1959
1969	Lluvias	Zona Sur	Arroz	Pérdidas de ¢ 5 millones	La Nación, 1969
1973	Sequía	Nacional	Arroz	Pérdidas de 36800 toneladas	La Nación,1973
			Maíz	Pérdidas de 4600 toneladas	
1976	Sequía	Guanacaste	Arroz	Perdido el 75% del área sembrada	Arroyo y Patterson 1988
1977	Sequía	Guanacaste	Arroz	Perdidas 7000 hectáreas	Arroyo y Paterson
			Maíz	Pérdidas en Carrillo y Santa Cruz	1988
1982	Sequía	Nacional	Agricultura	Pérdidas de \$100 millones	Leconte, 1982
	Sequía	Guanacaste	Arroz, maíz	Pérdidas de ¢500 millones	La Nación, 1982
1983	Sequía	Guanacaste	Maíz, sorgo	Suspendida la siembra de 10 mil ha. Pérdidas del sector agricola de ¢1500 millones	Vega, 1983
1986	Sequía	Guanacaste	Arroz, maíz	Pérdidas por \$6 millones. Disminuyó la cosecha nacional	OMM, 1987
1991	Sequía	Guanacaste	Arroz	Pérdidas de 2000 ha sembradas	Leitón, 1991
	Lluvias	Pacífico sur	Frijol	Pérdida nacional de ¢187 millones	
1994	Sequía	Nacional	Arroz, maíz y frijoles	Pérdidas por ¢160 millones. Se pierde entre el 4 y 6% de la producción nacional de granos	Fuentes, 1994
1994	Sequía	Guanacaste Zona norte	Arroz, maíz y frijoles	Pérdidas por ¢290 millones en granos básicos	La Nación 1994
1997	Sequía	Nacional	Agricultura	Pérdidas por ¢600 millones en todo el sector agrícola hasta setiembre	AP/La República, 1997

Afectaciones asociadas al fenómeno "El Niño"?

ENOS	EFECTO	ZONA	EFECTOS Y MEDIDAS MITIGANTES	FUENTE
1958	Sequía	Guanacaste	Se muere ganado por sequía prolongada	La Prensa Libre. 1957
1973	Sequía	Guanacaste	Se traslada ganado a zonas menos afectadas cerca del embalse Arenal	La Nación, 1973
1983	Sequía	Guanacaste	Muere ganado en La Cruz y Cuaginiquil	Vega, 1983
1994	Sequía	Guanacaste	Falta de pastos por larga duración del veranillo y la estación seca	Cruz, 1994
			Dificultad para trasladar ganado a zonas menos afectadas. Solución vender los hatos. Pastos no alcanzan crecimiento normal	La Nación, 1994
			Se distribuyen pacas de heno y se abren pozos	Ramírez, 1994
1997	Sequía	Guanacaste	Mala alimentación por falta de forraje. Se sugiere racionalizar la carga animal	Umaña, 1997a
1997- 1998	Sequía	Guanacaste	Se inyectan vacunas y vitaminas	Estrada, 1998
		Zona Norte	Se perdió el 100% de los pastos. Trasladan 25 mil animales	
1998	Sequía	Nacional	Probable baja en la oferta de carne vacuna entre mayo y julio	Barquero, 1998
		Guanacaste Zona Norte	Transporte de melaza, heno y gallinaza para suplementar ración alimenticia	
1998	Sequía	Zona Norte	2000 reses muertas. Venta de heno, paja de arroz, melaza, banano y otros	Hernández, 1998

Condiciones climáticas durante ENOS

La fase cálida de ENOS tiene una alta probabilidad de producir escenarios secos en Guanacaste. Cerca de un 90% de los eventos secos registrados en la Región Chorotega entre 1950 y 1998, pueden ser explicados por El Niño

GRACIAS

SESION DE PREGUNTAS ???

Gracias por su atención

ikatchan@imn.ac.cr

Gestión de Información y Comercialización Instituto Meteorológico Nacional Tel. 222 56 16, ext. 114 Fax 258 26 52

