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About me

Research assistant @ CNCA-CeNAT since August 2016. J

@ Academics

2016 Bachelor in Electrical Engineering from UCR.
2020 Master degree in Computer Science from TEC.

@ HPC skills
e High Performance Python.
@ Research interests

o Computational Seismology.
e Earth Sciences.
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Introduction

An oxymoron

@ Lonely Together (Avicii feat. Rita Ora)
@ Acompaname a estar solo (Ricardo Arjona)
@ Virtual reality

@ "A joke is actually an extremely really serious issue.” - Winston
Churchill
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High Performance Python

Ly
YOU'RE DOING ITWWRONG
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Why trying it out anyway?
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Why trying it out anyway?

Solution Estimated time
Teach C programming to Leo A few months
Translating Leo’s program to C A few weeks

Make Leo’s program parallel with mpidpy less than a week
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Python is pretty popular

Language Rank  Types Spectrum Ranking
1. Python & 100.0
2.¢c nf==k
3. Java [ Jujes %05
4. Co+ 0Ls |e71
5. C# (:: Jul=) 87.7
6. R =) 87.7
7. JavaScript &0 8556
8. PHP ] 81.2
9. Go @ 75.1
10. Swift (a]m] 787

Worldwide, Jan 2018 compared to a year ago:

Rank Change Language Share Trend

1 Java 22.76 % -13%
2 Python 20.76 % +5.4 %
3 PHP 87% -18%
4 4 Javascript 8.49 % +0.3 %
5 ¥ C# 7.99 % -08 %

Jan 2018 Jan 2017 Change

1 1

2 2

3 3

4 5
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Myths

Myths
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Myths It cannot run as fast as C

It cannot run as fast as C
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Myths It cannot run as fast as C

Myth 1: It cannot run as fast as C

#H## test.py

a =10

b = 20
c=a+b

### end test.py

$ python -m dis test.py
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Myths It cannot run as fast as C

Myth 1: It cannot run as fast as C

1 0 LOAD_CONST 0 (10)

3 STORE_NAME 0 (a) riesp
i -
2 6 LOAD_CONST 1 (20) 20
9 STORE_NAME 1 (b) stack

3 12 LOAD_NAME 0 (a)

15 LOAD_NAME 1 (b)

18 BINARY_ADD -

19 STORE_NAME 2 (c)

22 LOAD_CONST 2 (None)

25 RETURN_VALUE
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Myths It cannot run as fast as C

Myth 1: It cannot run as fast as C

I/O operations

Core

operations

Figure: Common workload pattern in HPC
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Myths It cannot run as fast as C

Myth 1:It cannot run as fast as C

montecarlo scalablity
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Myths It cannot run as fast as C

Myth 1: It cannot run as fast as C

/{;\ @ Numpy
LBy o

@Mﬁ @ Numba

@ Wrappers
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Myths It doesn’t support threads

It doesn’t support threads
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It doesn’t support threads
Myth 2: It doesn’t support threads

GIL
Global Interpreter Lock
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It doesn’t support threads
Myth 2: It doesn’t support threads

A mental experiment
def gauss(n):
count = 0
for i in range(n+1l):
count += 1

def matmul (n) :

ml = np.empty ((n,n))
m2 = np.empty((n,n))
m3 = ml.dot (m2)
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Myt

It doesn’t support threads

Myth 2: It doesn’t support threads

| @ secure | https://docs.scipy.org/doc/numpy/reference/c-api array. htmlsthreading-support

Threading support

These macros are only meaningful if PY_ALLoW_THREADS evaluates True during compilation of the extension module. Otherwise, these macros are equivalent to
whitespace. Python uses a single Global Interpreter Lock (GIL) for each Python process so that only a single thread may execute at a time (even on multi-cpu
machines). When calling out to a compiled function that may take time to compute (and does not have side-effects for other threads like updated global variables), the
GIL should be released so that other Python threads can run while the time-consuming calculations are performed. This can be accomplished using two groups of
macros. Typically, if one macro in a group is used in a code block, all of them must be used in the same code block. Currently, NPY_ALLoW TEREADS s defined to the
python-defined WITH THREADS constantunless the environment variable NPy NoswP is Setin which case Np¥ ALLOW THREADS Is defined to be 0.
Group 1
This group is used to call code that may take some time but does not use any Python C-API calls. Thus, the GIL should be
released during its calculation.
NPY_BEGIN_ALLOW_THREADS
Equivalent to ey_secin_arow_tareaps except it uses wey aciow_rereans to determine if the macro if replaced with white-space or
not.
NPY_END_ALLOW_THREADS
Equivalent to ey_mm_acrow_tereans except it UseS wex_arow rereans to determine if the macro if replaced with white-space or not.
NPY_BEGIN_THREADS_DEF
Place in the variable declaration area. This macro sets up the variable needed for storing the Python state.
NPY_BEGIN_THREADS
Place right before code that does not need the Python interpreter (no Python C-API calls). This macro saves the Python state
and releases the GIL.
NPY_END_THREADS
Place right after code that does not need the Python interpreter. This macro acquires the GIL and restores the Python state
from the saved variable.
NPY_BEGIN_THREADS_DESCR (PyArray_Descr ‘dtype)
Useful to release the GIL only if dfype does neot contain arbitrary Python objects which may need the Python interpreter during
execution of the loop. Equivalent to
NPY_END_THREADS_DESCR (PyArray_Descr “dtype)
Useful to regain the GIL in situations where it was released using the BEGIN form of this macro.
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Myt It doesn’t support threads

Myth 2: It doesn’t support threads

@ Python » [Engish 7] (364

Table Of Contents
17.1. threading — Thread-
based paralilism
+ 17.1.1. Thread-Local
Data

» 1712 Thread Objects
= 1713, Lock Objects
= 17.1.4. RLock Objects
= 17.1.5. Condition Objects
« 17.1.6. Semaphore
Objects
- 7164
Semaphore
Example
» 177, Event Objects
» 17.1.8. Timer Objects
» 17.1.9. Barrer Objects
= 17.1.10. Using locks,
condtions, and
semaphores i the with
statement

Previous topic
17. Concurrent Execution

Next topic
17.2. multiprocessing —
Process-based paralleism

This Page

Reporta Bug
Show Source

¥] Documentation » The Python Standard Library » 17. Concurrent Execution »

[G5) | previous | next | modules | index
17.1. threading — Thread-based parallelism
Source code: Lib/threading.py

This module constructs higher-level threading interfaces on top of the lower level _thread module. See also the queue module.

The dunmy_threading module is provided for situations where threading cannot be used because _thread is missing.

Note: While they are not listed below, the camelCase names used for some methods and functions in this module in the Python 2.x series are still supported by this module.

This module defines the following functions:
threading. active_count()

Retum the number of Thread objects currently alive. The returned count is equal to the length of the list returned by enumerate )
threading. current_thread()

Retum the current Thread object, corresponding to the caller's thread of control. If the caller's thread of control was not created through the threading module, a dummy thread object with
limited functionality is returned.

threading. get_ident()

Retum the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-
specific data. Thread identifiers may be recycled when a thread exits and another thread is created

New in version 3.3,

threading. enumerate()

Retum a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread objects created by current_thread(), and the main thread. It excludes terminated
threads and threads that have not yet been started.

threading. main_thread()

Retum the main Thread object. In normal conditions, the main thread is the thread from which the Python interpreter was started.

New in version 3.4
threading. settrace func)

Set a trace function for all threads started from the threading module. The func will be passed to sys .settrace() for each thread, before its run () method is called
threading. setprofile(func)

Set a profile function for all threads started from the threading module. The func will be passed to sys. setprofile() for each thread, before ts run () method is called.
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It doesn’t support threads
Myth 2: It doesn’t support threads

U,

u"\*:&‘
» X -
%\5:\ @ Numpy and similar
@j‘;}&w well-behaved modules.

@ threading module
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Myths No one else is doing it

No one else is doing it
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Myth 3: No one else is doing it
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Myt

Myth 3: No one else is doing it

TABLE 1

No one else is doing it

CLASSIFICATION OF TOOLS THAT PROVIDE PARALLELISM IN THE PYTHON PROGRAMMING LANGUAGE.

Project Execution Parallel Vector data Language Code modifications  Parallel platform Latest release
strategy paradigm oriented support

Bohrium [14] Interpreted Data Yes Full, Python 2 None SMP, GPU, Clusters 0.3, Apr-2016

PyStream [15] Compiled Data Yes Subset, Python 2 None GPU 0.1, Jul-2011

Daskarray [16] Interpreted Data Yes Full, Python 3 FunCall SMP, Clusters 0 13.0, Jan-2017

PupyMPI [17] Interpreted MsgPsg No Full, Python 2 FunCall SMP, Clusters

Papy [18] Interpreted Task No Full, Python 2 JobSub SMP, Clusters

GAIN [19] Binary binding ~ Data Yes Full, Python 2 FunCall Clusters 1.0, 2009

Global Arrays [20] Binary binding ~ Data Yes Full, Python 2 FunCall Clusters 5.5, Aug-2016.

mpidPy [21] Binary binding ~ MsgPsg No Full, Python 23 FunCall SMP, Clusters

Pythran [22] Compiled Data Yes Subset, Python 3 Annotations SMP 3

ASP [23] Binary binding  Data, Task No Full, Python 2 JobSub SMP, GPU 0.13.1, 0ct-2013

Dispeldpy [24] Interpreted Data, Task No Full, Python 23 JobSub SMP, Clusters 1.2, Jun-2015
Interpreted Data No Full, Python FunCall SMP, Clusters 1.0, Dec-2009

JitdOpenCL [26] Compiled Data Yes Full, Python 2 Annotations SMP, GPU 10,2010

MRS [27] Interpreted MapRed No Full, Python 23 FunCall Clusters 0.9, Nov-2012

Pydron [28] Interpreted Task No Subset Annotations Clusters -

CoAuray [29] Interpreted Data Yes Full, Python 2 FunCall Clusters 2004

PyCuda, PyOpenCL [30]  Binary binding ~ Data Yes Full, Python 23 FunCall SMP, GPU 201622, Oct-2016

SCOOP [31] Interpreted Task No Full, Python 23 JobSub SMP, Clusters 0.7.1.1, Ago-2015

DistArray [32] Interpreted Data es Full, Python JobSub SMP, Clusters 0.6, 0ct-2015

Dispy [33] Interpreted Data, MapRed ~ No Full, Python 23 JobSub SMP, Clusters 4.6.17, Sep-2016

IpyParallel [34] Interpreted Data, Task No Full, Python 23 JobSub SMP, Clusters 5.3.0, 0ct-2016

PyRo [35] Interpreted MsgPsg No Annotations, FunCall  Clusters 4.50, Nov-2016

Parallel python [36] Interpreted Task No SMP, Clusters 165, Tul-2016

JUG [37] Interpreted Task No Full, Python 23 Amnotations, FunCall  SMP, Clusters 3.0, Nov-2016

Multiprocessing [38] Interpreted Task, Data No Full, Python 23 FunCall SMP, Clusters . Jul-2016

Copperhead [39] Binary binding  Data Yes Subset, Python 2 Annotations GPU

Celery [40] Interpreted Task No Full, Python 23 Annotations, FunCall ~ SMP, Clusters

Disco [41] Interpreted MapRed No Full, Python 2 Annotations, FunCall ~ SMP, Clusters

Spark [42] Binary binding  Task No Full, Python 23 FunCall Clusters

Theano [43] Binary binding  Data Yes Full, Python FunCall SMP, GPU, Clusters

Numba [44] Compile Data Yes Full, Python 23 Annotations SMP, GPU

Joblib [45] Interpreted Task No Full, Python 23 JobSub, Annotations ~ SMP 0.103, Oct-2016

Hadoopy [46] Binary binding  MapRed No Full, Python 2 JobSub Clusters 0.5.0, Jun-2012

PYMW [47] Interpreted Task No Full, Python 2 FunCall Clusters 0.4, Jun-2010

Pyfora [48] Compiled Data No Subset, Python 2 None Clusters, SMP 0.5.8, Set-2016
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Myth 3: No one else is doing it
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Myth 3: No one else is doing it

u"\*:&‘
; ’ﬁ\ @ (At least) 34 projects that
“
ﬁw’(g@\) o provide parallelism in the
@;M Python programming

language.
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The Real Problem
Hiding complexity that doesn’t go anywhere J
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Rumors
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Dummy objects that screw up memory
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Dummy objects that screw up memory

import numpy as np import numpy as np

n = 100000
rand = np.random.random(nxn) n 100000
count = 0
count = 0 S .
S . for i in range(n):
for i in range(n):
count +=
count +=

np.sum(rand[i=n:ixn+n]) np .sum(np.random.random(n))
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Dummy objects that screw up memory

% memory used

0 20 40 60 80 100
seconds (s)
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Rumors

Dummy objects that screw up memory

Dummy objects that screw up memory
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Hey, use Numpy!
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Rumors Hey, use Numpy!

Hey, use Numpy!
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Hey, use Numpy!

def locate_events(events, stations):
locations = []
for event in events:
min_err = math.inf

for x in range(x.i, x_f+dx, dx):
for y in range(y.i, y_f+dy, dy):
for z in range(z.i, z_f+dz, dz):

for A in np.arange(A.i, A_f+dA, dA):
err.accum = 0
for s_.k, s_v in stations.items():

r = math.sqrt(math.pow(x—s_v[0], 2) + math.pov

A_calc = A « math.exp(—Bxr) / r

err_.accum += math.pow(A_calc — event[s_k], 2)

if errraccum < min_err:
min_err = err.accum

loc = [event[’event’], x, y, z, A, err.accum]
A_obs = sum([math.pow(event[s], 2) for s in stations.keys()])

loc[—1] = 100.0 *= math.sqrt(loc[—1] / A_obs)
locations .append(loc)
return locations
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Rumors

Hey, use Numpy!

Hey, use Numpy!
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But... there’s hope!

But... there’s hope!
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there’s hope!

OSI Model
Data Layer
Data Application
Network Process to Application
” =
g Data Presentation
% Data Representation and Encryption
~
E] Data Session
I Interhost Communication
Segments Transpmrt -
L] End-to-End Connections and Reliability
Packets Network
14 Path Determination and IP (Logical Addressing)
2
3 I — Data Link
% MAC and LLC (Physical Addressing)
5]
= Bits Physical
L] Media, Signal, and Binary Transmission
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But... there’s hope! Emerging Technologies

Emerging Technologies
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But... there’s hope! Emerging Technologies

Just In Time Compilers

e HOPE
@ Numba
@ PyPy
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But... there’s hope! Emerging Technologies

Domain Specific Languages

@ Allow solutions to be expressed in the idiom and at the level of
abstraction of the problem domain.

@ Not Turing-complete necessarily.

Guillermo Cornejo (CeNAT) High Performance Python February 2nd, 2018

44/50



Guillermo Cornejo (CeNAT) High Performance Python February 2nd, 2018 45/50



A dose of technical realism

A dose of technical realism
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A dose of technical realism

A dose of technical realism

Interpreter startup

I/O operations

- Core
operations
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A dose of technical realism

A dose of technical realism

montecarlo scalablity

60

bit

50 +

40 4

Speedup
w
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204

10 4

montecarlo_C
montecarlo_threads
montecarlo_dask
montecarlo_mpi
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Conclusions

@ KISS: our scientific colleges program in Python, so we do.

@ Python is a well-suited language for HPC environments, but
programming requires a lot of effort.

© HPC Python programmers must study the technology to handle
the different abstraction levels at which problems arise.

© This is an exciting research field, any volunteers?
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